Discussion Q3

$$
\begin{aligned}
& u(x, y, t)=\frac{\Gamma}{4} u(x-\Delta x, y, t-\Delta t) n_{n} \\
& +\frac{1}{4} u(x+\Delta x, y, t-\Delta t)+\frac{1}{4} \Delta a \cdot . \\
& u(x y, t)=\frac{1}{4}\left[u(x, y, t)+u_{x} \Delta x+\frac{1}{2} u_{x x}(\Delta x)^{2}+u_{t}(-\Delta t)+\right. \\
& +\frac{1}{4}\left[u(x, y, t)+u_{x}(-\Delta x)+\frac{1}{2} u_{x x}(\Delta x)^{2}+u_{t}(-\Delta t)\right. \\
& +\frac{1}{4}\left[u(x, y, t)+u_{y}(\Delta y)+\frac{1}{2} u_{y y}(\Delta y)^{2}+u_{t}(-\Delta t)\right]+h \cdot 0 \cdot t \\
& x \frac{1}{4}\left[u(x, y, t)+u_{y}(-\Delta y)+\frac{1}{2} u_{y y}(\Delta y)^{2}+u_{t}(-\Delta t)\right] \\
& 0=\frac{1}{4} u_{x x}(\Delta x)^{2}+\frac{1}{4} u_{y y}(\Delta y)^{2}-u_{t} \Delta t
\end{aligned}
$$

$$
\begin{aligned}
& u_{t}=\frac{1}{t} \frac{(\Delta x)^{2}}{\Delta t} u_{x x}+\frac{1}{4} \frac{(\Delta y)^{2}}{\Delta t} u_{y y} \\
& D_{1}=\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta t \rightarrow 0}} \frac{(\Delta x)^{2}}{4 \Delta t}, D_{2}=\lim _{\substack{\Delta y \rightarrow 0 \\
\Delta t \rightarrow 0}} \frac{(\Delta y)^{2}}{4 \Delta t}
\end{aligned}
$$

Assume $D_{1}=D_{2}=D_{1}$
x hen taking our PDt and letting $\Delta t, \Delta x, \Delta_{y} \rightarrow 0$ we have!

$$
u_{t}=D\left(u_{x x}+u_{y y}\right) \quad \hat{\nabla}
$$

We con assume $\Delta x=\Delta y$. Otherwise diffusion
mould be di-ectonally dependent.

$$
\left\{\begin{aligned}
& u(x, y, z, t)= \\
& \frac{1}{6}[6 u(x, y, z, t)\left.+\frac{\partial^{2} u}{\partial x^{2}} \Delta z\right)^{2} \\
&+\frac{\partial^{2} u}{\partial y^{2}}(\Delta u)^{2} \\
&+\frac{\partial^{2} u}{\partial z^{2}}(\Delta z)^{2} \\
&-6 \frac{\partial u}{\partial t} \Delta t
\end{aligned}\right]
$$

We con assume $\Delta x=\Delta y=\Delta z$.

What if the rule is (for 20)

Moving along the digonals, maker the particle noe father, because the diagonals have length $\sqrt{2} \Delta x=\sqrt{2} \Delta y$.

In the N,S, E, W direction, the difhaion is $\frac{1}{2} D$ where $D=\lim _{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}} \frac{(\Delta x)^{2}}{4 \Delta t}$.

In the 4 diagonal directions, the diffusion is D, because it is $\lim _{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}} \frac{1}{2} \cdot \frac{(\sqrt{2} \Delta x)^{2}}{4 \Delta t}$

$$
=\lim _{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}} \frac{(\Delta x)^{2}}{4 \Delta t}
$$

So, the random walk system with diagonals converges to the diffusion equation

So, the random walk system with diagonals converges to the diffusion equation

$$
\frac{\partial u}{\partial t}=\left(\frac{1}{2} D-D\right) \nabla^{2} u=\frac{3}{2} D \nabla^{2} u
$$

where $D=\lim _{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}} \frac{(\Delta x)^{2}}{4 \Delta t}$ is the diffension from the first pact of the question.

Reaction -Diffusion Turing Mechanisms
Turing's idea:
Suppose one has 2 chemical species A and B that obey certain (nonlinear) reaction-diftasion equations

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=F(A, B)+\partial_{A} \nabla^{2} A \\
& \frac{\partial B}{\partial t}=G(A, B)+D_{B} \nabla^{2} B
\end{aligned}
$$

If in the absence of diffusion (i.e., $D_{A}=D_{B}=0$), the system is linearly stable, then under certain conditions, two different diffusion rates $\left(D_{A} \neq D_{B}\right)$ can give rise to spatially inhomogeneous patterns, which are nom called Turing patterns of Turing instabilities.

